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Introduction

Almost 10% of the worldwide burden of morbidity and
mortality relates to respiratory tract infections (RTIs) 
and, whilst the majority of this is viral in aetiology, three-

quarters of all antibiotic consumption is for RTIs.1 In the
context of considerations for improving therapeutic out-
comes, reducing resistance emergence/prevalence and mini-
mizing costs by limiting and optimizing therapy, respiratory
infections are clearly an appropriate area for action.
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Widespread, increasing antibiotic resistance amongst the major respiratory pathogens has
compromised traditional therapy of the major infective respiratory syndromes, including 
bacterial pneumonia and acute exacerbations of chronic bronchitis. Guidelines for antibiotic
prescribing dating from the 1980s to 1990s, which attempted to address such problems, were
commonly too prescriptive and difficult to apply, and took little account of end-user practice or
locally prevalent resistance levels. Further confusion was caused by conflicting recommenda-
tions emanating from differing specialty groups. The evidence that such guidelines benefited
either clinical outcomes or treatment costs has been disputed. They have probably had little
effect on resistance emergence. We report the recommendations of an independent, multi-
national, inter-disciplinary group, which met to identify principles underlying prescribing and
guideline formulation in an age of increasing bacterial resistance. Unnecessary prescribing
was recognized as the major factor in influencing resistance and costs. Antibiotic therapy must
be limited to syndromes in which bacterial infection is the predominant cause and should
attempt maximal reduction in bacterial load, with the ultimate aim of bacterial eradication. It
should be appropriate in type and context of local resistance prevalence, and optimal in 
dosage for the pathogen(s) involved. Prescribing should be based on pharmacodynamic 
principles that predict efficacy, bacterial eradication and prevention of resistance emergence.
Pharmacoeconomic analyses confirm that bacteriologically more effective antibiotics can
reduce overall management costs, particularly with respect to consequential morbidity and
hospital admission. Application of these principles should positively benefit therapeutic 
outcomes, resistance avoidance and management costs and will more accurately guide anti-
biotic choices by both individuals and formulary/guideline committees.
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Streptococcus pneumoniae is the most common bacterial
pathogen in RTI and each year is implicated in 500 000
cases of pneumonia and over 7 million cases of otitis media
in the USA alone.2 Worldwide, pneumococcal disease is
among the leading cause of mortality, particularly among
children, the elderly and those with co-morbid illness.3

Increasing penicillin/macrolide resistance, reaching 30–40%
of isolates in many areas, is therefore of considerable 
concern.4 Macrolide resistance in S. pneumoniae now
exceeds penicillin resistance in some regions and continues
to increase.3,4 Pneumococcal fluoroquinolone resistance
remains rare, but will inevitably increase as these agents
are more widely employed in RTI.4–7

The selection of antibiotic resistance is inevitable. The
overall volume of antibiotic prescribing is the primary 
factor driving resistance at both local and regional levels,8–11

although other influences, notably clonal spread, com-
plicate epidemiology. It is therefore necessary to educate
prescribers in the need to avoid antibiotic therapy where
there is no clinical indication, although this may be resisted
by patients, who will also require education.12,13 However,
although studies of pneumococcal disease in Scandinavia
have indicated significant falls in resistance levels to a 
specific antibiotic after reduction in its prescribing,14–16

prescribing of structurally unrelated antibiotics (via co-
selection of multi-resistance plasmids and other resistance
traits) may perpetuate selection pressure.17

Guidelines on antibiotic prescribing in RTI are available
almost in profusion. For community-acquired pneumonia
(CAP) alone, they include those of the American Thoracic
Society (ATS), the Infectious Diseases Society of America
(IDSA), the British Thoracic Society (BTS), the European
Respiratory Society (ERS) and many other national soci-
eties and organizations.18–22 Their recommendations vary,
reflecting the inadequacies and ambiguity of the available
evidence base, bacterial resistance rates and both inter-
specialty and national differences.18–22 Compliance with
guidelines is neither universal nor optimal,23,24 nor have
existing guidelines necessarily improved outcomes or re-
duced costs. In one study of CAP, in 46% of cases ATS
guideline compliance made no difference to mortality, but
increased drug acquisition costs 10-fold in more severe 
disease.23

Lack of compliance with guidelines may result from 
lack of awareness, inertia, ambiguity and inconsistency of
validation, variance in local resistance prevalence and pre-
scribing patterns, interference via marketing activities and
absence of enforcement measures.24–26 Primarily, however,
physicians must perceive guidelines as being relevant and
useful to their everyday clinical practice.

The consensus principles reported in this paper repre-
sent the conclusions of an international, interdisciplinary
group that considered the current evidence supporting
appropriate use of antibiotics in lower respiratory tract
infection (LRTI).

Antibiotics are indicated only in bacterial
infection

This is self-evident but commonly ignored. The reasons
driving the unnecessary and excessive prescription of anti-
biotics are complex, but include pressures from patients
and parents, and constraints on physician time, plus a lack
of appreciation of the possible impact on resistance.12,13

Nurse prescribing, a projected development in Europe,
may also contribute to excessive use in the future. In the
UK the Medicines Control Agency (document MLX 273,
2001) has already consulted on extending prescribing of
prescription-only medicines, including oral antibiotics, to
nurse practitioners.

Use of antibiotics for non-bacterial or self-limiting 
bacterial infection risks adverse reactions and selects for
development of bacterial antibiotic resistance. The latter is
inextricably linked to antibiotic consumption at both local
(individual practice) and regional levels,8–11 and increases
healthcare costs via unnecessary acquisition cost, adverse
event management and resistance emergence.27 Never-
theless, there is considerable unnecessary use of anti-
biotics,28–30 notably in viral infections such as the common
cold.31 In Canadian children, acquisition costs of unneces-
sary antibiotic prescribing were almost 50% of total pre-
scribing costs.28

Prescribing of antibiotics for respiratory infection,
whether necessary or not, may also have collateral effects
on microbial flora elsewhere in the body, notably the
bowel. Thus, restriction of use or, conversely, overuse may
have beneficial or deleterious effects on other diseases,
such as urinary tract infection, via susceptibility patterns of
associated pathogens.

Diagnostic and other measures to reduce
prescribing

Correct diagnosis of bacterial infection is the key to limit-
ing unnecessary prescribing. However, lack of availability
of cost-effective diagnostic tests ensures the persistence of
‘grey areas’ of confusing aetiology. Therefore, guidelines
should offer practical criteria to identify those bacterial
infections that require antibiotic therapy.

Thus, although initially viral, 60% of patients with symp-
toms of sinusitis persisting for 10 days have bacterial infec-
tion.32 Restriction of therapy to only those patients would
significantly reduce unnecessary prescribing.33 Similarly,
restriction of antibiotic therapy in otitis media to those 
children with acute bacterial disease and avoidance in 
otitis media with effusion (unlikely to indicate bacterial
infection) could reduce unnecessary use by two-thirds.34,35

Moreover, there is little evidence that antibiotic therapy
influences the outcome of acute bronchitis or milder ex-
acerbations of chronic bronchitis,31,36,37 and prescribing
could again be dramatically reduced. Thus more precise
diagnostic criteria can improve the quality of therapy.
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Measures to reduce the prevalence of bacterial infec-
tions are also relevant. For example, conjugate pneumo-
coccal and influenza vaccines should reduce the frequency
of CAP and acute exacerbation of chronic bronchitis
(AECB), particularly in elderly, at-risk populations,2,38–40

and thus decrease antibiotic usage. Preliminary data indi-
cate dramatic reductions in hospitalization and mortality
from use of these vaccines,41 suggesting an associated
reduced necessity for prescribing.

Therapy should reduce maximally or eradicate
the bacterial load

There is accumulating evidence to confirm bacterial erad-
ication as the primary goal of antibiotic therapy and the
main determinant of therapeutic outcome.42 However, spon-
taneous clinical recovery, common in mild to moderate
RTI, may mask differences in bacteriological effectiveness
of antibiotics and allow sub-optimal agents to continue to
be prescribed.42,43 Thus, agents with poor bacteriological
efficacy can appear clinically almost as good as those with
optimal efficacy: the ‘Pollyanna effect’.43 However, these
small differences, apparently irrelevant in small series,
translate to significant numbers of bacteriological failures
in larger populations treated with sub-optimal therapy,
with resultant prolongation of morbidity, risk of resistance
emergence and dramatic cost consequences.

Antibiotic therapy that allows bacterial persistence risks
not only early recurrence or relapse but also resistance
selection. It is therefore inappropriate. In practice, most
empirical RTI therapy is clinically based and bacterial
eradication is usually considered secondarily, if at all. How-
ever, bacteriological efficacy is the more sensitive and
direct outcome measure, and clinical studies should aim at
identifying reduction in bacterial load as the primary para-
meter by which antibiotics are compared.

In AECB, failure of bacteriological eradication predicts
clinical failure44 and such failure (and hospital admission) is
more common with agents of lower intrinsic activity and
higher resistance prevalence or where resistance develops
during therapy.45,46 Bacteriological efficacy may also influ-
ence longer-term outcomes in AECB, superior eradication
of Haemophilus influenzae in patients receiving gemi-
floxacin compared with clarithromycin (82% versus 62%)
correlating at 26 week follow-up with 29% and 42% relapse
rates (P � 0.016), respectively.47

Pharmacodynamic indices assist appropriate
choices of agent and dosage

Pharmacodynamic (PD) properties clearly differentiate
between antibiotic classes, and often between members 
of the same class, in their ability to eradicate pathogens at
drug concentrations attainable during therapy. Standard in

vitro MICs give no information on the time-course of anti-
bacterial activity, but integration of MIC with pharmaco-
kinetic (PK) parameters provides PK/PD indices, which
are valuable tools with which to predict antibacterial
effects and optimal drug dosage.48,49 Such indices include:
the time for which non-protein bound concentrations ex-
ceed the MIC (T � MIC); the ratio between peak serum
concentration (Cmax) and MIC (Cmax/MIC); and the rela-
tionship between drug exposure [area under the serum 
24 h concentration–time curve (AUC24)] and MIC (AUC24/
MIC).48–52 These indices correlate with clinical out-
come,52–54 underlying bacteriological eradication53,55 and
emergence (or prevention) of resistance.51,56 Attempts to
integrate such indices with microbiological parameters
other than MIC [e.g. mutant prevention concentration
(MPC)] is, as yet, of unproven clinical relevance.48

For �-lactams and macrolides, bacteriological efficacy
correlates with T � MIC. Higher survival rates (�90%) are
seen in animal models if T � MIC is �40% of the dosage
interval for penicillins and 40–50% for macrolides and
cephalosporins.48 Human studies (in otitis media and sinus-
itis) support these findings.48–51

Fluoroquinolones exhibit concentration-dependent bac-
terial killing and, therefore, Cmax/MIC52 and the relative
AUC/MIC ratios53–55 correlate with efficacy for these
agents. Based on human data from levofloxacin studies, a
Cmax/MIC ratio of at least 10–12 (inter alia) predicts optimal
bactericidal activity for susceptible organisms.52 Past work
suggested an AUC/MIC ratio of �125 to optimize outcome
in pneumonia. However, in vitro, ex vivo and modelling
studies (but as yet not human data) suggest an AUIC ratio
of 25–30 to better predict optimal bactericidal efficacy for
other fluoroquinolones against S. pneumoniae.48,57,58 A
recent review indicates that all fluoroquinolones, except
ciprofloxacin in standard dosage, would exceed the AUC/
MIC target (50) expected to achieve pneumococcal eradica-
tion in LRTI.48

Further human studies are required to examine the 
predictive quality of PD parameters on bacterial efficacy
and resistance development in Gram-positive RTI in 
man. Nevertheless, PD principles can be used to determine
thresholds for adequate dosage and to compare agents
both within and between antibiotic classes. They should 
be used routinely in drug evaluation and might obviate
repetitive and uninformative equivalence studies.59

Antibiotic choices must reflect local resistance
prevalence

Increasing high-level resistance in RTI pathogens must
inevitably result in increased therapeutic failure rates, but
the true extent of failure in community-acquired RTI and
its relation to resistance prevalence is currently unknown.
Adequately documented resistance-related failures are
few in number, but are certainly an iceberg phenomenon.
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A research database to which such failures could be noti-
fied might rapidly have significant implications for guide-
lines. However, until such data are available, it must be
accepted that bacteriological failure is most likely to result
from sub-optimal therapy, irrespective of the ‘degree’ of
resistance.

For example, in the rat pneumonia model, co-amoxiclav
at doses mimicking standard paediatric dosage was ineffec-
tive against pneumococcal strains with MICs of �2 mg/L,
although efficacy was maintained if the dose was increased
and T � MIC was at least 34%.60 The impact of penicillin
resistance differs between �-lactams, dependent on in vitro
potency and PD characteristics. Thus, in gerbil otitis media,
amoxicillin was significantly more effective than cefur-
oxime against a penicillin-resistant strain (MIC 2 mg/L).61

Similar observations apply to fluoroquinolones. In the rat
pneumonia model, grepafloxacin and gemifloxacin were
significantly more effective against pneumococci than
either levofloxacin or ciprofloxacin (P � 0.01).62

Double typanocentesis (tap) studies in human otitis
media demonstrate the effect of antibiotic resistance on bac-
terial eradication. For example, in one study of penicillin-
resistant isolates, failure rates were 4/14 (29%) with
amoxicillin compared with 11/17 (65%) with cefaclor,
which had a less favourable PD profile.63 Increasing the 
T � MIC of �-lactams by manipulating dosing schedules
can increase their efficacy against resistant strains. For ex-
ample, single-dose ceftriaxone failed to eradicate penicillin-
resistant S. pneumoniae (PRSP) in 7/13 (54%) of patients,
whereas 3 day therapy eradicated 94% of resistant strains
(P � 0.01).64

These studies clearly indicate that the use of agents and
dosages with optimal potential to eradicate pathogens is
appropriate.

Prescribing change and choices of agents

Thus, locally relevant guidelines should reflect the preval-
ence and degree of resistance levels, and this may require
modification of existing practice. Penicillin resistance in 
S. pneumoniae, although prevalent in many countries, has
not yet compromised adequate dosage therapy of adult
CAP in monomicrobial infections of moderate severity
caused by strains with MICs of up to 2 mg/L.65,66 In paedi-
atric bacteraemia, no association was found between 
penicillin resistance and mortality.67 However, others have
reported increasing adult mortality in CAP related to
pneumococcal penicillin MIC elevation68 and mode MICs
for pneumococci are rising: recent data from the USA
reported 7.8–9.7% of strains to have penicillin MICs of
�4.0 mg/L.68,69 Strains with high MICs are often associated
with identifiable risk factors and detected in hospital
patients.70,71 However, when they become common in the
community, even maximal doses of penicillins may no
longer prove effective and alternative strategies will be
necessary.72

Macrolides may not prove to be satisfactory substitutes:
treatment failure in CAP caused by macrolide-resistant
pneumococci has been reported since early in the 1990s.73

More recently, 11 patients with pneumonia and one with-
out an identifiable infection site developed bacteraemia
with a macrolide-resistant S. pneumoniae whilst receiving
macrolide therapy. All responded to �-lactam therapy.74

Four similar cases have subsequently been reported and a
further four azithromycin failures, three treated success-
fully with a quinolone and one fatal, are recorded.75–77

These probably represent the tip of an as yet clinically
unapparent iceberg. However, there appears little doubt
that macrolide resistance correlates directly with clinical
failure and that guidelines should exclude macrolides in
areas of rising resistance prevalence. This view is rein-
forced by a Finnish population study directly linking rising
macrolide resistance to macrolide use (P � 0.006).78

New third-generation fluoroquinolones have markedly
increased potency against pneumococci in comparison with
second-generation agents, although most treatment fail-
ures with earlier agents were due to inadequate dosage,
absorptive interactions or related severe underlying dis-
ease rather than lack of intrinsic activity. However, fatal-
ities in meningitis79 and clinical failures in pneumonia
caused by levofloxacin-resistant S. pneumoniae80 confirm
that emergent resistance is becoming clinically relevant for
agents with marginal PD indices.6 Most recently, stepwise
parC and gyrA mutations in pneumococci during cipro-
floxacin therapy of RTI have been shown to be responsible
for treatment failures and for associated jumps in MICs for
later agents, such as moxifloxacin, in strains (23F) that have
spread to other patients.46

Thus, there is increasing evidence from animal models
and human infection that bacterial resistance influences
outcome and that local surveillance should dictate optimal
choices for empirical therapy. However, this is an intrins-
ically dynamic situation—perceptions of stasis result 
from inappropriate perspectives—which requires regular
re-assessment.

Appropriate antibiotic choices to minimize
resistance

Antibiotic resistance is inevitable. Therapeutic exposure of
human bacterial pathogens to antibiotics exerts a continu-
ous selection pressure on pathogens present both in infec-
tion and carriage or commensal sites in the individual,
within institutions, the community and the environment.
This has been recognized since the beginning of the anti-
biotic era72 and favours pathogens that exhibit spontaneous
resistance mutation and/or acquire genetic resistance
determinants from other organisms. Antibiotic selection
pressure may also accelerate bacterial chromosomal resist-
ance mutation.81 Sub-optimal dosage also predisposes to
resistance emergence, e.g. lower than recommended dosage
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and prolonged exposure to �-lactams predisposes to naso-
pharyngeal carriage of PRSP in children.82

Differential effects both between and within antibiotic
classes have major importance. For example, increasing
prevalence of PRSP in France is linked to widespread
replacement of aminopenicillins by oral cephalosporins,
many of which achieve a T � MIC of �40% for S. pneumo-
niae, resulting in inadequate bacterial killing.83,84 A signi-
ficant correlation between macrolide resistance in S. pneu-
moniae and consumption of long half-life macrolides 
(clarithromycin, azithromycin) has been reported from
various countries, even after single dose exposure.85,86 The
ability to select for resistance in tissue compartments and at
specific concentrations (selective window) may also allow
differentiation of agents.87

For fluoroquinolones, reports from Hong Kong, Canada
and the USA indicate emergent quinolone resistance in
pneumococci,5–7 primarily mediated via chromosomal
mutation. Thus increasing mutations lead to stepwise
increases in resistance and increased prevalence of first-
step mutants predisposes to selection of highly resistant
second-step mutants.88 Selection of first-step mutants
might be avoided by restricting use of less active agents in
favour of newer quinolones with better PD perform-
ance.46,89 Nevertheless, levofloxacin, only marginally more
potent against S. pneumoniae than ciprofloxacin, is widely
and apparently effectively used, although the studies sup-
porting such use were undertaken in the years prior to the
current upward shift of pneumococcal quinolone MICs.90–92

Thus, AUC/MIC and Cmax/MIC ratios have become mar-
ginal in some patients with CAP,93 which may result in 
sub-optimal efficacy and selection of first-step mutants.46,56

Risk factors for acquisition of levofloxacin-resistant 
S. pneumoniae include presence of chronic obstructive 
pulmonary disease, residence in an institution and prior
exposure to quinolones.94

Co-selection of resistance may be encouraged by sub-
optimal exposure to other antibiotics. In Iceland, penicillin
resistance was twice as likely to be associated with the use
of co-trimoxazole or erythromycin than with �-lactams in
association with three or more courses of antibiotic treat-
ment.95 In the UK, sulphonamide resistance (in Escherichia
coli) remained high due to co-selection, despite dramatic
reductions in prescribing.17

Active control of resistance by antibiotic
restriction

In hospitals and other institutions, decreased antibiotic use
may reduce the prevalence of resistance,96 but the situation
is more complex in the community. For example, in Fin-
land, implementation of guidelines reduced macrolide con-
sumption from 2.40 to 1.38 defined daily doses (DDD)/
1000 population and the prevalence of erythromycin-resist-
ant group A streptococci fell from 16.5% in 1992 to 8.6% 

in 1996.16 However, a more recent Finnish study showed
rising pneumococcal resistance to parallel increasing
macrolide use.78 In Iceland, carriage of PRSP in children
was found to relate to age (�2 years), area of highest anti-
biotic consumption and recent individual use of antibiotics,
including co-trimoxazole.14,95 Reduced antibiotic use, par-
ticularly of co-trimoxazole, was accompanied by a decrease
in the prevalence of penicillin non-susceptible strains from
a peak of 19.8% in 1993 to 12.9% in 1997.14

Resistance prevalence can increase very rapidly in a
population and mathematical models suggest that thresh-
old levels exist, after which resistance dissemination accel-
erates rapidly.9 Reduced antibiotic consumption results 
in a much slower decline in prevalence and, in areas with 
very high prevalence, it may be that reduction in antibiotic
pressure will have an even slower effect, especially in the
presence of multidrug resistance.9,97,98 This provokes the
chilling prospect that supra-threshold levels of community
multi-resistance may no longer be reversible. In addition,
the loss of virulence often associated with resistance may
be overcome by compensatory mutation.99,100 It is, there-
fore, imperative that appropriate strategies are acted upon
prior to such events; later action may fail to redress the 
situation.

In Sweden, a programme to prevent the projected
increase in prevalence of PRSP has incorporated contact
tracing and isolation with efforts to reduce antibiotic 
consumption and, thereby, carriage and dissemination of
resistant strains. Its effectiveness has not yet been estab-
lished15 and it may yet be pre-empted by interspecies trans-
fer of resistance genes. The threat posed by the global
resistance gene pool in related species must be anticipated.
Assuming the continued transfer of genetic data from com-
mensal streptococci to pneumococci and the involvement
of later antibiotic classes,101 such as the quinolones, the 
routine use of optimally active agents becomes a priority.

Acquisition costs may be insignificant compared
with therapeutic failure

Drug acquisition costs are a primary consideration only if
there are no significant differences in:

● treatment outcomes between agents;
● potential for selection of resistance;
● incidence of significant treatment-related adverse events.

This might, for example, occur with generic substitution of
an established agent.

In many cases, cost-effectiveness analyses can identify
appropriate options on the basis of least cost per outcome
measure gained.102 For example, quinolones may compare
favourably with standard care of CAP in terms of costs 
of treatment, including specific values such as length of
stay.103,104 Alternatively, shorter courses of equal efficacy
may minimize cost. In the UK, prescribing costs of 7 day
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therapy of CAP with generic antibiotics in the 1990s
exceeded the costs of 5 day therapy by £1.9–7.2 million.25

Thus, if similar outcomes result, shorter courses are clearly
preferable.

Inappropriate therapy of RTI is expensive. For example,
in 49 552 episodes of LRTI where antibiotic treatment
matched the susceptibility of the aetiological agent, the
average cost per episode was US$8821, compared with
US$14 754 when treatment was discrepant (P � 0.02).105

In AECB, first-line agents (amoxicillin, co-trimoxazole,
erythromycin, tetracyclines) gave failure and hospitaliza-
tion rates of 19% and 18%, respectively, compared with
7% and 5% for agents with more optimal PD activity. The
infection-free interval was significantly longer in the latter
group and overall costs were almost halved (US$942 versus
US$542).45

Treatment failure far exceeds the acquisition costs of
any antibiotic106 and hospitalization is the key cost-driver
of management of moderate/severe pneumonia and
AECB.107 Excess costs of hospitalization following treat-
ment failure far outweigh primary care costs.108 In a study
of 50 000 episodes of community-acquired LRTI, 65.6%
(US$73.1 million) of the total management costs related to
hospitalization, whereas drug acquisition costs were 5%
(US$5.6 million).109 Similarly, in AECB patients �65 years
of age, hospitalization costs were $1.1 billion per annum
compared with $24.9 million for outpatient costs.110

Few prospective studies have examined more long-term
parameters of cost-effectiveness. Ciprofloxacin therapy of
AECB was cheaper and had greater benefit on quality of
life in patients with multiple risk factors for poor outcome
than ‘standard–usual care’ therapy.111 Thus, severity crite-
ria may be used to indicate subgroups in which drugs with
higher acquisition costs, but with improved PD potential
may demonstrate cost benefit. A follow-up study of 
gemifloxacin compared with clarithromycin over 6 months
in AECB47 showed that higher rates of eradication of 
H. influenzae by the quinolone correlated with lower re-
lapse rates (29% versus 41.5%; P � 0.016), a reduction in
hospitalizations and a saving of US$329 per patient.112

Thus antibiotic treatment that reduces the risk of hos-
pitalization or reduces length of stay must be highly cost-
effective, and agents that achieve improved bacterial
eradication also have the potential to improve long-term
clinical outcomes and reduce overall costs and, perhaps,
limit resistance emergence and dissemination.

Conclusions

From the 1980s onwards, resistance has steadily com-
promised standard therapy of bacterial LRTIs and, in con-
sequence, newer agents, inevitably more costly, have been
required. The use of these agents exposes them to risks of
resistance emergence and patients to the risk of novel
adverse drug reactions, which are phenomena having

important implications in morbidity and cost for indivi-
duals and for society. However, antibiotic utilization con-
tinues to increase, perhaps more in some countries than in
others113 and, for RTI at least, �90% of patients expect
antibiotic treatment13 and may resist restricted prescribing.
Optimized therapy must therefore be seen to be desirable
and must demonstrably reduce morbidity (and mortality),
the costs of failure and hospitalization, and emergence of
antibiotic resistance. Strategies most likely to achieve these
goals must incorporate the principles summarized below:

● identification of bacterial infections by optimized diag-
nosis;

● severity assessment where relevant;
● recognition and incorporation of ambient resistance

data;
● targeting bacterial eradication (or maximal reduction in

bacterial load);
● use of PD indices to optimize choice and dosage;
● objective assessment of true (overall) costs of resistance

and related treatment failure.

It is very clear that many practice guidelines meet neither
these principles nor the interdisciplinary, evidence base-
linked criteria that might strengthen the provenance of 
the guideline concept.114 Lack of credibility is one of the
primary failures of speciality group advocacy guidelines,
followed rapidly by lack of relevance to everyday prac-
tice,24 family practice guidelines in other disciplines often
having had minimal impact on patient outcomes.115 Such
findings have followed more than a decade of guideline
development. Perhaps a radical re-evaluation of the prin-
ciples of therapy in our own discipline is also long overdue.
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