Новости
Искусственный интеллект и количественная масс-спектрометрия предскажут исход заболевания COVID-19
Фото из открытого источника (Яндекс-картинки)
- 06.10.2022
- 681
Исследователи из Сколтеха и Университета Макгилла и их коллеги обучили искусственный интеллект предсказывать вероятность выживания пациентов с COVID-19, поступающих в реанимацию – сообщает портал «Научная Россия»1. Алгоритм машинного обучения смог верно предсказать выживание больных с вероятностью 92% на основании измерения концентрации 15 биомолекул (10 белков и 5 метаболитов) в плазме крови методом таргетной масс-спектрометрии. Результаты исследования имеют значение для сортировки пациентов в условиях недостаточности медперсонала и оборудования, когда врачи вынуждены решать, кто из одновременно поступивших пациентов получит приоритет при проведении реанимационных мероприятий. Работа опубликована в журнале Molecular & Cellular Proteomics и включена в подборку интересных исследований от редакции.
Общая схема исследования: у 40 пациентов с COVID-19 были собраны образцы плазмы крови в момент госпитализации, а также через два дня и через неделю пребывания в клинике. При помощи количественной масс-спектрометрии измерены уровни 270 белков и 139 метаболитов. Поскольку дальнейшая судьба каждого пациента известна, на этих данных оказалось возможно обучить алгоритм искусственного интеллекта, который смог предсказывать исход болезни.
«Когда инфраструктура госпиталя перегружена, врачам необходимы методы дополнительной оценки степени тяжести состояния пациентов и прогнозирования возможных осложнений. Получив такую дополнительную информацию, например за счёт омиксных данных, врач может оптимизировать стратегию оказания помощи и более своевременно проводить необходимые реанимационные мероприятия пациентам, у которых самые высокие риски. Как раз для этого и предназначено наше решение: искусственный интеллект помогает провести оценку степени тяжести пациента на основании омиксных данных по образцам крови и предсказать возможные осложнения, вплоть до летального исхода», — говорит профессор Евгений Николаев из Центра молекулярной и клеточной биологии.
Николаев и его коллеги исследовали мультиомиксные данные по нескольким стам пациентов, исход болезни которых известен и у которых брали кровь при поступлении в реанимацию, а также на вторые и седьмые сутки. За счёт этого у каждого больного был измерен его подробный протеомный и метаболомный профиль, то есть уровни потенциальных биомаркеров в плазме крови. «Мы также рассмотрели уровни метаболитов — эти малые молекулы, продукты обмена веществ, тоже имеют предсказательную силу. В итоге отобрали набор из 10 белков и 5 метаболитов, по которым алгоритм искусственного интеллекта может весьма точно предсказывать выживание пациента уже на момент его поступления в реанимацию», — комментирует Николаев, добавляя, что такое предсказание вовсе не исключает возможности субъективного решения со стороны врача.
Старший научный сотрудник Сколтеха Алексей Кононихин рассказывает: «Набор белков-маркеров, который мы определили, был валидирован на независимых данных из европейских клиник Шарите и Инсбрука, и на этой выборке наша модель тоже показала хорошую точность (более 80%) прогнозирования летального исхода у пациентов».